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ABSTRACT
In this article, we propose an efficient and robust estimation for the semi-
parametric mixture model that is a mixture of unknown location-shifted
symmetric distributions. Our estimation is derived by minimizing the pro-
file Hellinger distance (MPHD) between the model and a nonparametric
density estimate. We propose a simple and efficient algorithm to find the
proposed MPHD estimation. Monte Carlo simulation study is conducted
to examine the finite sample performance of the proposed procedure and
to compare it with other existing methods. Based on our empirical stud-
ies, the newly proposed procedure works very competitively compared to
the existing methods for normal component cases and much better for
non-normal component cases. More importantly, the proposed procedure
is robust when the data are contaminated with outlying observations. A
real data application is also provided to illustrate the proposed estimation
procedure.
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1. Introduction

Them-component mixture model has the density

h(x) =
m∑
j=1

πjfj(x), x ∈ R
k, (1)

where fj is the jth component density and (π1, . . . ,πm) are the mixing proportions with
∑m

j=1 πj =
1. When m is unknown, there are various articles that discuss the selection of m; see, for example,
Roeder [1], McLachlan and Peel [2], Chen et al. [3,4] and Chen and Li [5]. We assume throughout
the article thatm is fixed and known. When fj belongs to a parametric family F = {f (·;μ) : μ ∈ R

d},
i.e. fj(·) = f (·;μj), model (1) has been well studied in the literature; see, for example, Lindsay [6],
Böhning [7], McLachlan and Peel [2], and Frühwirth-Schnatter [8].

In practice, however, the choice of parametric family F is difficult and it may affect the model esti-
mation. Many authors have been trying to relax parametric assumptions on fj. Note that model (1)
is generally unidentifiable if no restrictions are placed on fj, simply due to the fact that fj alone
could be another mixture of several densities. Bordes et al. [9] and Hunter et al. [10] considered a
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location-shifted mixture model by assuming fj(·) = f (· − μj), i.e.

h(x; θ , f ) =
m∑
j=1

πjf (x − μj), (2)

where θ = (πj,μj, j = 1, . . . ,m) and f is an unknown density function symmetric about zero.
Model (2) is called semiparametric since it involves both unknown functional part f and unknown
parametric part θ . Bordes et al. [9] proved the identifiability of model (2) form= 2. Hunter et al. [10]
established the identifiability of model (2) for both m= 2 and m= 3. Bordes et al. [11] provided an
EM type algorithm to estimate model (2) and claimed that the new EM-type algorithm has better
performance, according to their numerical studies, than the methods provided by Hunter et al. [10]
and Bordes et al. [9]. Benaglia et al. [12] further improved the estimation procedure over Bordes et al.
[11]. However, their estimates based on semiparametric EM algorithm (SPEM) do not fully use the
model information in the M step and thus are not efficient.

In this article, we propose to estimate the semiparametric model (2) by minimizing the profile
Hellinger distance between a nonparametric density estimation and assumedmodel (2). The resulted
estimation is calledminimumprofileHellinger distance (MPHD) estimation andwas first introduced
in [13]. It is well known that minimum Hellinger distance (MHD) estimator has been proved to
be efficient and robust [6,14] for parametric models. MHD estimation for semiparametric models
has been studied extensively in the past few years by many authors, including Wu and Karunamnui
[13,15,16], Wu et al. [17], Tang and Karunamuni [18], Zhu et al. [19], and Xiang et al. [20], among
others. The MPHD estimation introduced recently by Wu and Karunamuni [13] has the advantage,
over abovementionedworks, that it does not require a separate estimation of the infinite-dimensional
nuisance parameter. It has been shown in [13] that the MPHD estimation is efficient, adaptive and
robust against model misspecification. The robust and efficient properties of the MPHD estimation
proposed in this paper, particularly for the mixture model (2), are also demonstrated by our Monte
Carlo simulation studies. Based on our empirical study, the proposed MPHD estimation works very
competitively with the existing methods for normal cases and much better for non-normal cases.
More importantly, the proposed MPHD estimation is robust when the data are contaminated with
outlying observations. A real data application is also provided to illustrate the proposed estimation
procedure.

The remainder of this paper is organized as follows. In Section 2, we introduce the new MPHD
estimation method for the semiparametric mixture model (2) and propose an effective algorithm to
find the proposed estimation. In Section 3, we present both aMonte Carlo study and a real data exam-
ple to compare the proposed MPHD estimation with those based on some other different methods.
Finally, some discussions are given in Section 4.

2. New estimationmethod

In this section, we will develop the MPHD estimator for model (2). We first introduce the idea of
MPHD estimators [13]. Then we apply this method to model (2).

2.1. Introduction ofMPHD estimator

Let (X ,S , ν) be a measure space andH be a semiparametric model of ν-densities of the form

H = {hθ ,f : θ ∈ �, f ∈ F}, (3)

where� is a subset ofRp andF is an arbitrary set of infinite dimension. Let G be a class of ν-densities
that containsH. For members a and b of L2(ν) we write 〈a, b〉 for their inner products in L2(ν) and
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‖a‖ for the L2(ν)-norm. The Hellinger distance between two members g1 and g2 of G is given by

dH(g1, g2) = ‖g1/21 − g1/22 ‖ =
√
2 − 2〈g1/21 , g1/22 〉 =

√
2〈g1/22 − g1/21 , g1/22 〉.

Assume that X1, . . . ,Xn are independent and identically distributed (i.i.d.) X -valued random vari-
ables (r.v.s) with density h0 = hθ0,f0 with θ0 an interior point of � and f0 ∈ F . Suppose ĥn is
a nonparametric G-valued estimator of h0 based on observed data X1, . . . ,Xn. Then, the MHD
estimators of f0 and θ0 are

(f̂ , θ̂) = argmin
f∈F ,θ∈�

‖h1/2
θ ,f − ĥ1/2n ‖. (4)

Note that the arguments in Equation (4) contain both parametric part θ and nonparametric part f.
In order to simplify the computation, Wu and Karunamuni [13] proposed the MPHD estimation
method based on the profile idea.

SupposemodelH is identifiable in the sense that ‖h1/2
θ1,f1 − h1/2

θ2,f2‖ = 0 implies θ1 = θ2 and f1 = f2.
For each θ ∈ �, let

fθ (ĥn) = argmin
f∈F

‖h1/2
θ ,f − ĥ1/2n ‖. (5)

Then, the profile Hellinger distance function D(θ) is defined as

D(θ) = inf
f∈F

‖h1/2
θ ,f − ĥ1/2n ‖ = ‖h1/2

θ ,fθ (ĥn)
− ĥ1/2n ‖, θ ∈ �. (6)

The MPHD estimator of θ0 proposed by Wu and Karunamuni [13] is

θ̂ = argmin
θ∈�

D(θ).

Therefore, the profile method reduce the problem of minimizing the complicated objective function
in Equation (4), which contains both parametric part θ and nonparametric part f, to the problem of
minimizing the simple Hellinger distance function D(θ), which only contains the parametric part
θ . Wu and Karunamuni [13] have proved the efficiency and robustness of MPHD estimators for
semiparametric models (3).

2.2. Application ofMPHD estimator to the semiparametric mixturemodel (2)

Next we apply the MPHD method to the location-shifted mixture model (2). For simplicity we con-
sider the case thatm= 2. The following result could be easily extended to the cases withm> 2. First,
model (2) could be rewritten as

H = {hθ ,f (x) = π f (x − μ1) + (1 − π)f (x − μ2) : θ ∈ �, f ∈ F}, (7)

where

� =
{
θ = (π ,μ1,μ2) : π ∈

(
0,
1
2

)
∪

(
1
2
, 1

)
,μ1 < μ2,μi ∈ R, i = 1, 2

}
,

F =
{
f : f ≥ 0, f (−x) = f (x),

∫
f (x) dx = 1

}
. (8)

Note that in Equation (8), we assumeμ1 < μ2, following Hunter et al. [10], to avoid the label switch-
ing issue [21,22]. By Theorem 2 of Hunter et al. [10], the mixture model H in Equation (7) is
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identifiable over � and F given in Equation (8). Therefore, the idea of MPHD estimation method
can be applied to semiparametric mixture model (7) to produce an efficient and robust estimate.

Note that in order to use MPHD estimator, we need to have a nonparametric estimate of
hθ ,f . Suppose we observe X1, . . . ,Xn from a population with density hθ ,f ∈ H. Let ĥn denote the
nonparametric kernel density estimator of hθ ,f , i.e.

ĥn(x) = 1
nb

n∑
j=1

K
(
Xj − x

b

)
,

where K(·) is a density function (called kernel) and b is the bandwidth. In this paper, we use Gaus-
sian density for K(·), and b = b(n) → 0 as n → ∞. Then, following Wu and Karunamuni [13], we
propose an MPHD estimator of as

θ̂ = argmin
θ∈�

‖h1/2
θ ,fθ

− ĥ1/2n ‖, (9)

where fθ is defined in Equation (5).

2.3. Computation algorithm

Since the MPHD estimate θ̂ defined in Equation (9) does not have an explicit expression, we propose
the following algorithm to calculate θ̂ iteratively. Suppose the initial estimates of θ = (π ,μ1,μ2) and
f are, respectively, θ (0) = (π(0),μ(0)

1 ,μ(0)
2 ) and f (0).

Step 1 For fixed π(k), μ(k)
1 , μ(k)

2 and f (k), find f (k+1) which minimizes

‖[π(k)f (k)(· − μ
(k)
1 ) + (1 − π(k))f (k+1)(· − μ

(k)
2 )]1/2 − ĥ1/2n (·)‖.

It turns out [13] that the solution is

f (k+1)(x − μ
(k)
2 ) =

⎧⎨
⎩

α

1 − π(k) ĥn(x) − π(k)

1 − π(k) f
(k)(x − μ

(k)
1 ), if x ∈ M,

0, if x ∈ MC,

where

M = {x : αĥ(x) ≥ π(k)f (k)(x − μ
(k)
1 )},

α = sup
0<a≤1

⎧⎨
⎩π(k)

∫
M

f (k)(x − μ
(k)
1 ) dx + (1 − π(k)) ≥ a

∫
M

ĥn(x) dx

⎫⎬
⎭ .

If both f (k) and ĥn are continuous, then

α =
(1 − π(k)) + π(k)∫

M
f (k)(x − μ

(k)
1 ) dx

∫
M
ĥn(x) dx

.

Since f (·) is symmetric about 0, i.e. f (x) = f (−x), similar to Bordes et al. [11], we can symmetrize
f (k+1)(x) by

f (k+1)(x) + f (k+1)(−x)
2

.
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Step 2. For fixed f (k+1), find π(k+1), μ(k+1)
1 and μ

(k+1)
2 which minimize

‖[π(k+1)f (k+1)(· − μ
(k+1)
1 ) + (1 − π(k+1))f (k+1)(· − μ

(k+1)
2 )]1/2 − ĥ1/2n (·)‖. (10)

Then go to Step 1.
The minimization of Equation (10) requires numerical integration and optimization. To give the

initial estimates θ (0) and f (0), onemay use the following way, similar to the idea in [10]. For fixed θ (0),
define

f (0)(x) = u(x)I{u(x)≥0}∫
u(x)I{u(x)≥0} dx

,

where

u(x) = π(0)[ĥn(μ
(0)
1 + x) + ĥn(μ

(0)
1 − x)] − (1 − π(0))[ĥn(μ

(0)
2 + x) + ĥn(μ

(0)
2 − x)].

The estimator f (0) of f has appealing properties such as it is symmetric about zero, and f (0) = f when
ĥn = π(0)f (x − μ

(0)
1 ) + (1 − π(0))f (x − μ

(0)
2 ). Now θ (0) is the value which minimizes

‖[π(0)f (0)(· − μ
(0)
1 ) + (1 − π(0))f (0)(· − μ

(0)
2 )]1/2 − ĥ1/2n (·)‖.

3. Simulation studies and real data application

In this section, we use a Monte Carlo simulation study to illustrate the finite sample performance of
our proposedMPHD estimator and compare it with some existingmethods. In addition, we illustrate
the newly proposed procedure with an empirical analysis of a real data example.

Example 3.1: This example is designed to assess the finite sample performance and robustness of
the proposed estimator and compare it with some existing methods. We generate independent and
identically distributed data {x1, . . . , xn} from a population with density function

h(x) = π1f (x − μ1) + (1 − π1)f (x − μ2), (11)

where (π1,μ1,μ2) are unknown parameters and f is an unknown density that is symmetric about
zero. We consider the following four cases:

Case I: X ∼ 0.25N(−1, 1) + 0.75N(2, 1) ⇒ f (x) ∼ N(0, 1),μ1 = −1,μ2 = 2,π1 = 0.25.
Case II: X ∼ 0.3U(−1, 1) + 0.7U(0, 2) ⇒ f (x) ∼ U(−1, 1),μ1 = 0,μ2 = 1,π1 = 0.3.
Case III: f (x) ∼ t5,μ1 = 0,μ2 = 3,π1 = 0.3.
Case IV: X ∼ 0.25N(−1, 1) + 0.75N(2, 1) contaminated with 2% of outliers from U(10, 20) ⇒
f (x) ∼ N(0, 1),μ1 = −1,μ2 = 2,π1 = 0.25.

We use Case I to test the efficiency of our robust estimation compared to the traditionalMLEwhen
the error is normally distributed. Case II is also the model used by Bordes et al. [9] and Benaglia et al.
[12] to show the performance of their SPEM. Case II and Case III are used to demonstrate that the
proposed new method can be adaptive to the non-normal component densities. Case IV is the same
as Case I except for adding 2% outliers. Therefore, Case IV can be used to compare the robustness of
different estimation methods.

To estimate the unknown parameters in model (11), we consider the following three methods: (a)
MLE assuming normal assumption with equal variance (MLE); (b) SPEM proposed by Benaglia et al.
[12]; (c) the proposed MPHD estimator. For MLE, we use 20 random initial values and select the
converged value which has the largest likelihood. For SPEM, we use theMLE as the initial value (note
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that for SPEM, there is no objective function and thus it is difficult to choose the right root if multiple
initial values are used). For MPHD, we also use 20 random initial values and select the converged
value which minimizes the corresponding objective function.

To assess the performance, we look at both the mean and the root-mean-squared error (RMSE) of
each estimate:

mean(θ̂) = ¯̂
θ =:

1
N

N∑
t=1

θ̂ t ,

RMSE(θ̂) =
√√√√ 1

N

N∑
t=1

(θ̂ t − ¯̂
θ)2,

where N is the number of repetitions and θ̂ t is the estimate based on the tth replicate. Here we take
N = 200, and θ̂ is either MLE, SPEM, or MPHD estimate of θ = (π1,μ1,μ2).

For the four different cases, tables 1–3 report the mean and the RMSE of the parameter estimates,
based on the three methods under consideration, when n= 30, 100 and 300, respectively. Figure 1
shows the boxplots of RASE of Cases I–IV with n= 100. From the tables and figure, we have the
following findings.

1. The MPHD estimator has overall better performance than the MLE and SPEM. The proposed
MPHD estimate provides similar results to the MLE and SPEM estimate for normal component
density. However, MPHD showsmuch better performance than theMLE and SPEM estimate for
uniform and t5 component densities. In addition, based on Case IV, we can see that the MPHD

Table 1. Mean (RMSE) of point estimates for θ = (π1,μ1,μ2)when n= 30 for Example 3.1.

Component density True MLE SPEM MPHD

μ1 : −1 −0.998(0.582) −0.630(1.115) −0.841(0.641)
I: Norm μ2 : 2 2.042(0.379) 1.806(0.539) 1.910(0.335)

π1 : 0.25 0.272(0.121) 0.232(0.134) 0.255(0.134)
μ1 : 0 −0.005(0.277) 0.313(0.518) 0.055(0.279)

II: Uniform μ1 : 1 1.210(0.299) 0.896(0.317) 1.016(0.187)
π1 : 0.3 0.433(0.228) 0.311(0.164) 0.351(0.192)
μ1 : 0 −0.352(1.494) 0.061(1.865) −0.008(1.353)

III: t5 μ2 : 3 3.219(1.046) 2.832(1.130) 2.932(0.579)
π1 : 0.3 0.326(0.199) 0.267(0.207) 0.311(0.196)
μ1 : −1 1.244(2.265) 1.135(2.341) −0.686(0.872)

IV: Norm+Outliers μ2 : 2 15.02(13.37) 1.758(1.679) 1.758(0.553)
π1 : 0.25 0.968(0.718) 0.340(0.235) 0.247(0.195)

Table 2. Mean (RMSE) of point estimates for θ = (π1,μ1,μ2)when n= 100 for Example 1.

Component density True MLE SPEM MPHD

μ1 : −1 −1.030(0.318) −0.957(0.601) −0.968(0.315)
I: Norm μ2 : 2 2.010(0.146) 1.864(0.270) 2.013(0.161)

π1 : 0.25 0.250(0.057) 0.211(0.088) 0.250(0.060)
μ1 : 0 0.037(0.181) 0.382(0.528) 0.019(0.170)

II: Uniform μ1 : 1 1.126(0.205) 0.790(0.270) 0.978(0.153)
π1 : 0.3 0.401(0.170) 0.276(0.160) 0.301(0.130)
μ1 : 0 −0.331(2.330) 0.490(1.320) 0.032(0.605)

III: t5 μ2 : 3 3.574(2.080) 2.624(0.627) 2.964(0.361)
π1 : 0.3 0.345(0.230) 0.246(0.170) 0.299(0.130)
μ1 : −1 1.262(2.268) 1.112(2.310) −0.982(0.468)

IV: Norm+Outliers μ2 : 2 15.04(13.20) 1.662(0.462) 1.947(0.232)
π1 : 0.25 0.980(0.730) 0.318(0.158) 0.237(0.105)
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Table 3. Mean(RMSE) of Point Estimates for θ = (π1,μ1,μ2)when n= 300 for Example 1.

Component density True MLE SPEM MPHD

μ1 : −1 −0.985(0.165) −0.993(0.169) −0.938(0.169)
I: Norm μ2 : 2 2.022(0.085) 1.962(0.104) 2.034(0.093)

π1 : 0.25 0.252(0.033) 0.236(0.039) 0.254(0.034)
μ1 : 0 0.083(0.139) 0.196(0.295) 0.003(0.072)

II: Uniform μ1 : 1 1.126(0.163) 0.882(0.154) 1.002(0.048)
π1 : 0.3 0.414(0.150) 0.280(0.077) 0.299(0.051)
μ1 : 0 −0.446(2.030) 0.207(0.571) 0.044(0.241)

III: t5 μ2 : 3 3.396(2.150) 2.780(0.359) 2.995(0.130)
π1 : 0.3 0.309(0.190) 0.259(0.096) 0.301(0.061)
μ1 : −1 1.257(2.259) 1.466(2.487) −0.970(0.165)

IV: Norm+Outliers μ2 : 2 15.05(13.10) 1.558(0.470) 2.004(0.102)
π1 : 0.25 0.980(0.730) 0.509(0.276) 0.247(0.032)

Figure 1. Boxplot of RASE of Cases I-IV with n= 100.

estimator is resistent to outliers while the MLE and SPEM are very sensitive to the outliers and
fail to provide reasonable estimates when outliers are present.

2. The MLE, assuming normal components, works the best when the component density is exactly
normal but does not work well for uniform and t5 component densities.

3. The SPEM estimate provides worse results than the MLE for normal component density, espe-
cially for small sample size, but better results for uniform and t5 component densities, especially
for larger sample size.

Example 3.2: In this example, we illustrate the proposed methodology with an empirical analysis
of the Old Faithful geyser data. The Old Faithful geyser data, which is available in the standard R
distribution, records the waiting time between eruptions and the duration of the eruption for the Old
Faithful geyser in the Yellowstone National Park, Wyoming, USA. The time units are minutes. The
data set contains 272 observations on 2 variables. The waiting time variable has been used by Bordes
et al. [9], Hunter et al. [10] and Bordes et al. [11] as a benchmark for the location shifted mixture
model (2). The histogramof the data is shown in Figure 2(a). From the plot, we can see that thewaiting
time variable can be approximated well by a two-component normal mixture model. Table 4 reports
the parameter estimates based on different methods. It can be seen that our proposed MPHD, along
with SPEM, provide very close results to the parametricMLE, but without any parametric assumption
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Figure 2. (a) Histogram of the Old Faithful geyser waiting time data; (b) The estimated density plots of f for MLE (solid) and MPHD
(dashed).

about the component density. Figure 2(b) shows the estimated densities for f based on MLE and
MPHD. From the plot, we can see that the component density is close to normal.

To check the robustness of different methods, we add five identical outliers ‘0’ to the original data
set (the range of original data is from 43 to 96). The results are reported in Table 5, fromwhich we can
see that MPHD provides almost the same estimates as the ones without outliers in Table 4 and thus
is robust and resistent to outliers. Comparatively, MLE considers the five outliers as one component
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Table 4. Parameter estimates for the Old Faithful geyser waiting data based on different esti-
mation methods.

Method π1 μ1 μ2

MLE 0.361 54.61 80.09
SPEM 0.360 54.61 80.06
MPHD 0.352 54.81 79.97

Table 5. Parameter estimates for the Old Faithful geyser waiting data with added five outliers ‘0’
based on different estimation methods.

Method π1 μ1 μ2

MLE 0.018 0.061 70.90
SPEM 0.236 69.61 69.62
SPEM(MPHD) 0.338 51.04 79.11
MPHD 0.355 54.75 80.29

and the rest of the data as the other component. Therefore, the outliers have a big impact on MLE.
The estimate provided by SPEM, usingMLE as initial, is essentially a one component mixture model.
For comparison, we also add the SPEM usingMPHD as the initial, denoted by SPEM(MPHD). From
Table 5, we can see that the SPEM(MPHD) provides much more reasonable estimate than SPEM,
although the outliers still create some bias for the first componentmean of SPEM(MPHD). Therefore,
a good initial value for SPEM is crucial.

4. Concluding remark

We have developed an estimation procedure for a class of semiparametric mixture models, whose
components are unknown location-shifted symmetric densities. The proposed estimation procedure
is based onMHD. Using someMonte Carlo studies and data analysis, we have demonstrated that the
new MHD-based estimation for this semiparametric model inherits the desired robustness and effi-
ciency properties of traditional parametric MHD estimator. Our simulation studies further confirm
this conclusion.

Though in this paper we focus on the mixture of location shifted models, the proposed method-
ology can be easily adapted to other mixture models, such as mixture of linear regression models and
mixture of Poisson regression models. Those circumstances are of our great interest to further the
investigation of MHD inference.
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